Changes

TriForce

, 13:17, 8 April 2019
Kernel Optimization Attempts
Sudoku Solver Profiling

Rather than try to continuously increase the difficulty of a 9x9 sudoku, I decided to modify the program I found to handle larger and large sudokus, increasing the size of the matrices that make up the sudoku (starting with a 9x9 sudoku, which is 9 3x3 matrices, then 16x16 which is 16 4x4 matrices, and finally 25x25 which is 25 5x5 matrices) without changing the logic of the program (only constants), so larger sudokus are solved the same way as a normal one.
Source code from: https://www.geeksforgeeks.org/sudoku-backtracking-7/
[[File:Julia.jpg]]
|}

This problem would be fairly simple to parallelize. In the image created by Julia sets each pixel is independent of the others. This problem involves Complex numbers, but that can be simply represented by using two arrays, or pairs of floats.
==== Assignment 1: Selection for parallelizing ====
After reviewing the three programs above, we decided to attempt to parallelize the Sudoku Solver Program for a few reasons.
1. By increasing the dimensions of the smaller matrices that make up a sudoku by one, we see a major increase in the time it takes to solve the sudoku, from almost instantly to around 38 seconds, and then to '''36 minutes'''. With a 25x25 sudoku (of 5x5 matrices), several functions were called over '''100 million times'''.   2. Based on the massive time increases and similarity to the Hamiltonian Path Problem [https://www.hackerearth.com/practice/algorithms/graphs/hamiltonian-path/tutorial/] which also uses backtracking to find a solution, we believe the run time of the sudoku solver to have a Big O notation that approaches O(n!) where 'n' is the number of blank spaces in the sudoku as the sudoku solver uses recursion to check every single possible solution, returning to previous steps if the tried solution does not work. O(n!) is an even worse runtime than O(n^2).  3. The Julia sets still took less than 6 minutes after increasing the image size, and the EasyBMP only took a few seconds to convert a large, high resolution image. Therefore, the Sudoku Solver had the greatest amount of time to be shaven off through optimization and thus offered the most challenge.
=== Assignment 2 ===
#define N (BOX_W * BOX_W)
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
__global__ void solve(int* d_a) { // Used to remember which row | col | box ( section ) have which values __shared__ bool rowHas[N][N]; __shared__ bool colHas[N][N]; __shared__ bool boxHas[N][N];  // Used to ensure that the table has changed __shared__ bool changed; // Number of spaces which can place the number in each section __shared__ int rowCount[N][N]; __shared__ int colCount[N][N]; __shared__ int boxCount[N][N];  // Where the square is located in the Sudoku int row = threadIdx.x; int col = threadIdx.y; int box = row / BOX_W + (col / BOX_W) * BOX_W;  // Unique identifier for each square in row, col, box // Corresponds to the generic Sudoku Solve // Using a Sudoku to solve a Sudoku !!! int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);  // Square's location in the Sudoku int gridIdx = col * N + row;  int at = d_a[gridIdx];  bool notSeen[N]; for (int i = 0; i < N; ++i) notSeen[i] = true;  rowHas[col][row] = false; colHas[col][row] = false; boxHas[col][row] = false; __syncthreads();  if (at != UNASSIGNED) { rowHas[row][at - 1] = true; colHas[col][at - 1] = true; boxHas[box][at - 1] = true; } // Previous loop has not changed any values do { // RESET counters rowCount[col][row] = 0; colCount[col][row] = 0; boxCount[col][row] = 0; __syncthreads();  if (gridIdx == 0) // forget previous change changed = false; int count = 0; // number of values which can fit in this square int guess = 0; // last value found which can fit in this square for (int idx = 0; idx < N; ++idx) { // Ensures that every square in each section is working on a different number in the section int num = (idx + offset) % N; if (at == UNASSIGNED && notSeen[num]) { if (rowHas[row][num] || boxHas[box][num] || colHas[col][num]) notSeen[num] = false; else { ++count; guess = num; rowCount[row][num]++; colCount[col][num]++; boxCount[box][num]++; } } __syncthreads(); }  // Find values which can go in only one spot in the section for (int idx = 0; idx < N && count > 1; ++idx) { if (notSeen[idx] && (rowCount[row][idx] == 1 || boxCount[box][idx] == 1 || colCount[col][idx] == 1)) { // In this section this value can only appear in this square guess = idx; count = 1; } }  if (count == 1) { at = guess + 1; rowHas[row][guess] = true; colHas[col][guess] = true; boxHas[box][guess] = true; changed = true; } __syncthreads(); } while (changed); d_a[gridIdx] = at; }
bool validate(int result[N][N]) { // Where the square is located in the Sudoku for ( int row = 0threadIdx.x; row < N; row++) for ( int col = 0threadIdx.y; col < N; col int box = row / BOX_W ++) if (result[row][col] == 0/ BOX_W) return false* BOX_W; return true; }
// Unique identifier for each square in row, col, box // Corresponds to the generic Sudoku Solve // Using a Sudoku to solve a Sudoku !!! int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W); // Square's location in the Sudoku int gridIdx = col * N + row; int at = d_a[gridIdx]; bool notSeen[N]; for (int i = 0; i < N; ++i) notSeen[i] = true; rowHas[col][row] = false; colHas[col][row] = false; boxHas[col][row] = false; __syncthreads(); if (at != UNASSIGNED) { rowHas[row][at - 1] = true; colHas[col][at - 1] = true; boxHas[box][at - 1] = true; } // Previous loop has not changed any values do { // RESET counters rowCount[col][row] = 0; colCount[col][row] = 0; boxCount[col][row] = 0; __syncthreads(); if (gridIdx == 0) // forget previous change changed = false; int count = 0; // number of values which can fit in this square int guess = 0; // last value found which can fit in this square for (int idx = 0; idx < N; ++idx) { // Ensures that every square in each section is working on a different number in the section int num = (idx + offset) % N; if (at == UNASSIGNED && notSeen[num]) { if (rowHas[row][num] || boxHas[box][num] || colHas[col][num]) notSeen[num] = false; else { ++count; guess = num; rowCount[row][num]++; colCount[col][num]++; boxCount[box][num]++; } } __syncthreads(); } // Find values which can go in only one spot in the section for (int idx = 0; idx < N && count > 1; ++idx) { if (notSeen[idx] && (rowCount[row][idx] == 1 || boxCount[box][idx] == 1 || colCount[col][idx] == 1)) { // In this section this value can only appear in this square guess = idx; count = 1; } } if (count == 1) { at = guess + 1; rowHas[row][guess] = true; colHas[col][guess] = true; boxHas[box][guess] = true; changed = true; } __syncthreads(); } while (changed); //SOLVED CHECK if (!(rowHas[row][col] || colHas[row][col] || boxHas[row][col])) changed = true; __syncthreads(); if (changed && gridIdx == 0) at = 0; d_a[gridIdx] = at; } void print(int result[N][N]) { for (int row = 0; row < N; row++) { for (int col = 0; col < N; col++) printf("%3d", result[row][col]); printf("\n"); } }
// Driver program to test main program functions
int main() {
int h_a[N][N] = { { 1, 0, 4, 0, 25, 0, 19, 0, 0, 10, 21, 8, 0, 14, 0, 6, 12, 9, 0, 0, 0, 0, 0, 0, 5}, { 5, 0, 19, 23, 24, 0, 22, 12, 0, 0, 16, 6, 0, 20, 0, 18, 0, 25, 14, 13, 10, 11, 0, 1, 15}, { 0, 0, 0, 0, 0, 0, 21, 5, 0, 20, 11, 10, 0, 1, 0, 4, 8, 24, 23, 15, 18, 0, 16, 22, 19}, { 0, 7, 21, 8, 18, 0, 0, 0, 11, 0, 5, 0, 0, 24, 0, 0, 0, 17, 22, 1, 9, 6, 25, 0, 0}, { 0, 13, 15, 0, 22, 14, 0, 18, 0, 16, 0, 0, 0, 4, 0, 0, 0, 19, 0, 0, 0, 24, 20, 21, 17}, { 12, 0, 11, 0, 6, 0, 0, 0, 0, 15, 0, 0, 0, 0, 21, 25, 19, 0, 4, 0, 22, 14, 0, 20, 0}, { 8, 0, 0, 21, 0, 16, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 17, 23, 18, 22, 0, 0, 0, 24, 6}, { 4, 0, 14, 18, 7, 9, 0, 22, 21, 19, 0, 0, 0, 2, 0, 5, 0, 0, 0, 6, 16, 15, 0, 11, 12}, { 22, 0, 24, 0, 23, 0, 0, 11, 0, 7, 0, 0, 4, 0, 14, 0, 2, 12, 0, 8, 5, 19, 0, 25, 9}, { 20, 0, 0, 0, 5, 0, 0, 0, 0, 17, 9, 0, 12, 18, 0, 1, 0, 0, 7, 24, 0, 0, 0, 13, 4}, { 13, 0, 0, 5, 0, 2, 23, 14, 4, 18, 22, 0, 17, 0, 0, 20, 0, 1, 9, 21, 12, 0, 0, 8, 11}, { 14, 23, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 20, 25, 0, 3, 4, 13, 0, 11, 21, 9, 5, 18, 22}, { 7, 0, 0, 11, 17, 20, 24, 0, 0, 0, 3, 4, 1, 12, 0, 0, 6, 14, 0, 5, 25, 13, 0, 0, 0}, { 0, 0, 16, 9, 0, 17, 11, 7, 10, 25, 0, 0, 0, 13, 6, 0, 0, 18, 0, 0, 19, 4, 0, 0, 20}, { 6, 15, 0, 19, 4, 13, 0, 0, 5, 0, 18, 11, 0, 0, 9, 8, 22, 16, 25, 10, 7, 0, 0, 0, 0}, { 0, 0, 0, 2, 0, 0, 10, 19, 3, 0, 1, 0, 22, 9, 4, 11, 15, 0, 20, 0, 0, 8, 23, 0, 25}, { 0, 24, 8, 13, 1, 0, 0, 4, 20, 0, 17, 14, 0, 0, 18, 0, 16, 22, 5, 0, 11, 0, 10, 0, 0}, { 23, 10, 0, 0, 0, 0, 0, 0, 18, 0, 6, 0, 16, 0, 0, 17, 1, 0, 13, 0, 0, 3, 19, 12, 0}, { 25, 5, 0, 14, 11, 0, 17, 0, 8, 24, 13, 0, 19, 23, 15, 9, 0, 0, 12, 0, 20, 0, 22, 0, 7}, { 0, 0, 17, 4, 0, 22, 15, 0, 23, 11, 12, 25, 0, 0, 0, 0, 18, 8, 0, 7, 0, 0, 14, 0, 13}, { 19, 6, 23, 22, 8, 0, 0, 1, 25, 4, 14, 2, 0, 3, 7, 13, 10, 11, 16, 0, 0, 0, 0, 0, 0}, { 0, 4, 0, 17, 0, 3, 0, 24, 0, 8, 20, 23, 11, 10, 25, 22, 0, 0, 0, 12, 13, 2, 18, 6, 0}, { 0, 0, 7, 16, 0, 0, 6, 17, 2, 21, 0, 18, 0, 0, 0, 19, 0, 0, 8, 0, 0, 0, 0, 4, 0}, { 18, 9, 25, 1, 2, 11, 0, 0, 13, 22, 4, 0, 21, 0, 5, 0, 23, 7, 0, 0, 15, 0, 3, 0, 8}, { 0, 21, 10, 0, 0, 12, 0, 20, 16, 0, 19, 0, 0, 0, 0, 15, 14, 4, 2, 18, 23, 25, 11, 7, 0} }; int* d_a; //Table cudaMalloc((void**)&d_a, N * N * sizeof(int)); // Copy Sudoku to device cudaMemcpy(d_a, h_a, N * N * sizeof(int), cudaMemcpyHostToDevice); dim3 dBlock(N, N); solve << <1, dBlock >> > (d_a); // Copy Sudoku back to host cudaMemcpy(h_a, d_a, N * N * sizeof(int), cudaMemcpyDeviceToHost); // Check if solved if (h_a[0][0]) print(h_a); else printf("No solution could be found."); cudaFree(d_a); return 0; }
int* d_a; //Table
int* d_result; //Table change indicator
cudaMalloc((void**)&d_a, N * N * sizeof(int));
cudaMalloc((void**)&d_result, sizeof(int));
// Copy Sudoku to device
cudaMemcpy(d_a, h_a, N * N * sizeof(int), cudaMemcpyHostToDevice);
dim3 dBlock(N, N);
solve<<<1, dBlock>>>(d_a);
// Copy Sudoku back to host
cudaMemcpy(h_a, d_a, N * N * sizeof(int), cudaMemcpyDeviceToHost);
// Check if solved
if (validate(h_a))
print(h_a);
else
printf("No solution could be found.");
cudaFree(d_a);
cudaFree(d_result);
return 0;
}
|}
Reduced superSolve runtime from 5.2 to 3.8ms
[[File:Unoptimized_vs_Optimized.png]]
===Kernel Optimization Attempts===
These Kernels change a minor part of the Optimized Kernel or use a slightly different algorithm in an attempt to make it faster

Change : Replaces the boolean array hasSeen with a single int & uses bitwise operators
Theory : Since local array variables of threads are stored in Global memory this was an attempt to move that into a register
Result : No speed up noticed, suggesting that more is happening beyond arrays stored in Global memory, perhaps some type of paging,
more testing would be needed on something less erratic then a Sudoku Solver
{| class="wikitable mw-collapsible mw-collapsed"
! Using a int as a boolean array
|-
|
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
// Used to ensure that the table has changed
__shared__ bool changed;
// Number of spaces which can place the number in each section
__shared__ int rowCount[N][N];
__shared__ int colCount[N][N];
__shared__ int boxCount[N][N];
// Where the square is located in the Sudoku
int box = row / BOX_W + (col / BOX_W) * BOX_W;
int gridIdx = col * N + row;
int at = d_a[gridIdx];
// Unique identifier for each square in row, col, box
// Corresponds to the generic Sudoku Solve
// Using a Sudoku to solve a Sudoku !!!
int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);
// Square's location in the Sudoku
int notSeen = 0;
rowHas[col][row] = false;
colHas[col][row] = false;
boxHas[col][row] = false;
if (at != UNASSIGNED) {
rowHas[row][at - 1] = true;
colHas[col][at - 1] = true;
boxHas[box][at - 1] = true;
} else {
notSeen = ~0;
}
// Previous loop has not changed any values
do {
// RESET counters
rowCount[col][row] = 0;
colCount[col][row] = 0;
boxCount[col][row] = 0;
if (gridIdx == 0) // forget previous change
changed = false;
int count = 0; // number of values which can fit in this square
int guess = 0; // last value found which can fit in this square
int b_shuttle = 1;
for (int idx = 0; idx < N; ++idx) {
// Ensures that every square in each section is working on a different number in the section
int num = (idx + offset) % N;
if (b_shuttle & notSeen) {
if (rowHas[row][num] || boxHas[box][num] || colHas[col][num])
notSeen ^= b_shuttle;
else {
++count;
guess = num;
rowCount[row][num]++;
colCount[col][num]++;
boxCount[box][num]++;
}
}
b_shuttle <<= 1;
}
// Find values which can go in only one spot in the section
b_shuttle = 1;
for (int idx = 0; idx < N && count > 1; ++idx) {
int num = (idx + offset) % N;
if ((b_shuttle & notSeen) &&
(rowCount[row][num] == 1 || boxCount[box][num] == 1 || colCount[col][num] == 1)) {
// In this section this value can only appear in this square
guess = num;
count = 1;
}
b_shuttle <<= 1;
}

if (count == 1) {
at = guess + 1;
notSeen = 0;
rowHas[row][guess] = true;
colHas[col][guess] = true;
boxHas[box][guess] = true;
changed = true;
}
} while (changed);
//SOLVED CHECK
if (!(rowHas[row][col] || colHas[row][col] || boxHas[row][col]))
changed = true;
if (changed && gridIdx == 0)
at = 0;
d_a[gridIdx] = at;
}
|}
Change : Remove the counters, and logic which checks for a section needing a value in one place
Theory : The counting logic requires a additional nested loop each solve cycle and created more thread divergence
Result : The algorithm is slower, probably because 'sections requiring a single value' adds more values early in the kernel resulting in less passes overall
Also this kernel is similar to one of my earlier builds, which was unable to solve the 9x9 getting stuck on every square having more then one possible value
{| class="wikitable mw-collapsible mw-collapsed"
! Dropping Section Logic
|-
|
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
// Used to ensure that the table has changed
__shared__ bool changed;
// Number of spaces which can place the number in each section
// Where the square is located in the Sudoku
int box = row / BOX_W + (col / BOX_W) * BOX_W;
// Unique identifier for each square in row, col, box
// Corresponds to the generic Sudoku Solve
// Using a Sudoku to solve a Sudoku !!!
int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);
// Square's location in the Sudoku
int gridIdx = col * N + row;
int at = d_a[gridIdx];
bool notSeen[N];
for (int i = 0; i < N; ++i)
notSeen[i] = true;
rowHas[col][row] = false;
colHas[col][row] = false;
boxHas[col][row] = false;
if (at != UNASSIGNED) {
rowHas[row][at - 1] = true;
colHas[col][at - 1] = true;
boxHas[box][at - 1] = true;
}
// Previous loop has not changed any values
do {
// RESET counters
if (gridIdx == 0) // forget previous change
changed = false;
int count = 0; // number of values which can fit in this square
int guess = 0; // last value found which can fit in this square
for (int idx = 0; idx < N; ++idx) {
// Ensures that every square in each section is working on a different number in the section
int num = (idx + offset) % N;
if (at == UNASSIGNED && notSeen[num]) {
if (rowHas[row][num] || boxHas[box][num] || colHas[col][num])
notSeen[num] = false;
else {
++count;
guess = num;
}
}
}
if (count == 1) {
at = guess + 1;
rowHas[row][guess] = true;
colHas[col][guess] = true;
boxHas[box][guess] = true;
changed = true;
}
} while (changed);
//SOLVED CHECK
if (!(rowHas[row][col] || colHas[row][col] || boxHas[row][col]))
changed = true;
if (changed && gridIdx == 0)
at = 0;
d_a[gridIdx] = at;
}
|}

Change : Quickly finds one section that requires a single value in one spot, by checking all sections at once and remembering a single section
Theory : Similar to the previous Kernel, trying to remove the second loop
Result : Surprisingly slow, gains little benefit from the section logic and shared memory, yet is still required to count all values
{| class="wikitable mw-collapsible mw-collapsed"
! Notify - Determines a single section that has a limited value (removes section loop)
|-
|
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
// Used to ensure that the table has changed
__shared__ bool changed;
// Number of spaces which can place the number in each section
__shared__ int rowCount[N][N];
__shared__ int colCount[N][N];
__shared__ int boxCount[N][N];
// Where the square is located in the Sudoku
int box = row / BOX_W + (col / BOX_W) * BOX_W;
// Unique identifier for each square in row, col, box
// Corresponds to the generic Sudoku Solve
// Using a Sudoku to solve a Sudoku !!!
int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);
// Square's location in the Sudoku
int gridIdx = col * N + row;
int at = d_a[gridIdx];
bool notSeen[N];
for (int i = 0; i < N; ++i)
notSeen[i] = true;
rowHas[col][row] = false;
colHas[col][row] = false;
boxHas[col][row] = false;
__shared__ int notify;
if (at != UNASSIGNED) {
rowHas[row][at - 1] = true;
colHas[col][at - 1] = true;
boxHas[box][at - 1] = true;
}
// Previous loop has not changed any values
do {
// RESET counters
rowCount[col][row] = 0;
colCount[col][row] = 0;
boxCount[col][row] = 0;
if (gridIdx == 0) { // forget previous change
changed = false;
notify = -1;
}
int count = 0; // number of values which can fit in this square
int guess = 0; // last value found which can fit in this square
for (int idx = 0; idx < N; ++idx) {
// Ensures that every square in each section is working on a different number in the section
int num = (idx + offset) % N;
if (at == UNASSIGNED && notSeen[num]) {
if (rowHas[row][num] || boxHas[box][num] || colHas[col][num])
notSeen[num] = false;
else {
++count;
guess = num;
rowCount[row][num]++;
colCount[col][num]++;
boxCount[box][num]++;
}
}
}
if (rowCount[row][col] == 1 || colCount[row][col] == 1 || boxCount[row][col] == 1)
notify = col;
// Find values which can go in only one spot in the section
if (notify > 0 && at == UNASSIGNED && notSeen[notify] &&
(rowCount[row][notify] == 1 || boxCount[box][notify] == 1 || colCount[col][notify] == 1)) {
// In this section this value can only appear in this square
guess = notify;
count = 1;
}
if (count == 1) {
at = guess + 1;
rowHas[row][guess] = true;
colHas[col][guess] = true;
boxHas[box][guess] = true;
changed = true;
}
} while (changed);
//SOLVED CHECK
if (!(rowHas[row][col] || colHas[row][col] || boxHas[row][col]))
changed = true;
if (changed && gridIdx == 0)
at = 0;
d_a[gridIdx] = at;
}
|}

Change : Refactors the algorithm to count the total numbers that can fit in a square or section
Then counts down as values are added
Theory : Remove redundant counting logic that occurred during the Optimized Kernel each pass
Result : Not faster, HOWEVER there is a slight error, by setting notSeen = 0, the section counters will rarely reach one
{| class="wikitable mw-collapsible mw-collapsed"
! CountDown - using Int as Boolean Array(EDITED now 4.28 seconds)
|-
|
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
// Used to ensure that the table has changed
__shared__ bool changed;
// Number of spaces which can place the number in each section
__shared__ int rowCount[N][N];
__shared__ int colCount[N][N];
__shared__ int boxCount[N][N];
// Where the square is located in the Sudoku
int box = row / BOX_W + (col / BOX_W) * BOX_W;
int gridIdx = col * N + row;
int at = d_a[gridIdx];
// Unique identifier for each square in row, col, box
// Corresponds to the generic Sudoku Solve
// Using a Sudoku to solve a Sudoku !!!
int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);
// Square's location in the Sudoku
int count = 0; //Number of values which can fit in this square
int notSeen = 0; //Boolean Array as an Integer
if (gridIdx == 0)
changed = true;
rowHas[col][row] = false;
colHas[col][row] = false;
boxHas[col][row] = false;
rowCount[col][row] = 0;
colCount[col][row] = 0;
boxCount[col][row] = 0;
if (at != UNASSIGNED) {
rowHas[row][at - 1] = true;
colHas[col][at - 1] = true;
boxHas[box][at - 1] = true;
}
int guess;
int b_shuttle = 1;
for (int idx = 0; idx < N; ++idx) {
int num = (idx + offset) % N;
if (at == UNASSIGNED && !(rowHas[row][num] || boxHas[box][num] || colHas[col][num])) {
notSeen |= b_shuttle; //this value can go here
++count; //how many values this square can have
guess = num;
//how many values this section can have
rowCount[row][num]++;
colCount[col][num]++;
boxCount[box][num]++;
}
b_shuttle <<= 1;
}
if (at == UNASSIGNED && count == 0) //NOT POSSIBLE SUDOKU
changed = false;
if (count == 1) {
at = guess + 1;
notSeen = count = 0;
rowHas[row][guess] = true;
colHas[col][guess] = true;
boxHas[box][guess] = true;
}
// Previous loop has not changed any values
while (changed) {
if (gridIdx == 0) // forget previous change
changed = false;
int b_shuttle = 1;
for (int idx = 0; idx < N; ++idx) {
// Ensures that every square in each section is working on a different number in the section
int num = (idx + offset) % N;
if (b_shuttle & notSeen &&
(at != UNASSIGNED || rowHas[row][num] || boxHas[box][num] || colHas[col][num])) {
rowCount[row][num]--;
colCount[col][num]--;
boxCount[box][num]--;
notSeen ^= b_shuttle;
--count;
}
if (b_shuttle & notSeen &&
(count == 1 || rowCount[row][num] == 1 || boxCount[box][num] == 1 || colCount[col][num] == 1)) {
rowHas[row][num] = true;
colHas[col][num] = true;
boxHas[box][num] = true;
changed = true;
notSeen ^= b_shuttle;
at = num + 1;
count = 0;
}
b_shuttle <<= 1;
}
};
if (!(rowHas[row][col] && colHas[row][col] && boxHas[box][col]))
changed = true; //HAVE NOT SOLVED the sudoku
if (changed && gridIdx == 0)
at = 0;
d_a[gridIdx] = at;
}
|}

Change : uses countdown logic with a boolean array
Result : Similar times to other Countdown kernel

{| class="wikitable mw-collapsible mw-collapsed"
! Countdown Boolean Array (EDITED - now 4.37ms)
|-
|
__global__ void solve(int* d_a) {
// Used to remember which row | col | box ( section ) have which values
__shared__ bool rowHas[N][N];
__shared__ bool colHas[N][N];
__shared__ bool boxHas[N][N];
// Used to ensure that the table has changed
__shared__ bool changed;
// Number of spaces which can place the number in each section
__shared__ int rowCount[N][N];
__shared__ int colCount[N][N];
__shared__ int boxCount[N][N];
// Where the square is located in the Sudoku
int box = row / BOX_W + (col / BOX_W) * BOX_W;
int gridIdx = col * N + row;
int at = d_a[gridIdx];
// Unique identifier for each square in row, col, box
// Corresponds to the generic Sudoku Solve
// Using a Sudoku to solve a Sudoku !!!
int offset = col + (row % BOX_W) * BOX_W + (box % BOX_W);
// Square's location in the Sudoku
int count = 0; //Number of values which can fit in this square
bool notSeen[N]; //Boolean Array as an Integer
for(int idx = 0; idx < N; ++idx)
notSeen[idx] = false;
if (gridIdx == 0)
changed = true;
rowHas[col][row] = false;
colHas[col][row] = false;
boxHas[col][row] = false;
rowCount[col][row] = 0;
colCount[col][row] = 0;
boxCount[col][row] = 0;
if (at != UNASSIGNED) {
rowHas[row][at - 1] = true;
colHas[col][at - 1] = true;
boxHas[box][at - 1] = true;
}
int guess;
for (int idx = 0; idx < N; ++idx) {
int num = (idx + offset) % N;
if (at == UNASSIGNED && !(rowHas[row][num] || boxHas[box][num] || colHas[col][num])) {
notSeen[num] = true; //this value can go here
++count; //how many values this square can have
guess = num;
//how many values this section can have
rowCount[row][num]++;
colCount[col][num]++;
boxCount[box][num]++;
}
}
if (at == UNASSIGNED && count == 0) //NOT POSSIBLE SUDOKU
changed = false;
if (count == 1) {
at = guess + 1;
count = 0;
notSeen[guess] = false;
rowHas[row][guess] = true;
colHas[col][guess] = true;
boxHas[box][guess] = true;
}
// Previous loop has not changed any values
while (changed) {
if (gridIdx == 0) // forget previous change
changed = false;
for (int idx = 0; idx < N; ++idx) {
// Ensures that every square in each section is working on a different number in the section
int num = (idx + offset) % N;
if (notSeen[num] &&
(at != UNASSIGNED || rowHas[row][num] || boxHas[box][num] || colHas[col][num])) {
rowCount[row][num]--;
colCount[col][num]--;
boxCount[box][num]--;
notSeen[num] = false;
--count;
}
if ( notSeen[num] &&
(count == 1 || rowCount[row][num] == 1 || boxCount[box][num] == 1 || colCount[col][num] == 1)) {
rowHas[row][num] = true;
colHas[col][num] = true;
boxHas[box][num] = true;
changed = true;
notSeen[num] = false;
at = num + 1;
count = 0;
}
}
};
if (!(rowHas[row][col] && colHas[row][col] && boxHas[box][col]))
changed = true; //HAVE NOT SOLVED the sudoku