Difference between revisions of "GPU610/TeamKappa"

From CDOT Wiki
Jump to: navigation, search
(Program 1: RSA Encryption)
Line 9: Line 9:
 
[mailto:romullings@myseneca.ca,acooc@myseneca.ca,mjang13@myseneca.ca?subject=dps901-gpu610 Email All]
 
[mailto:romullings@myseneca.ca,acooc@myseneca.ca,mjang13@myseneca.ca?subject=dps901-gpu610 Email All]
  
== Progress ==
+
== Assignment 1 ==
=== Assignment 1 ===
 
  
=== Assignment 1 ===
+
=== Program 1: RSA Encryption ===
== Program 1: RSA Encryption ==
 
  
 
Code From Github: [https://github.com/maxxboehme/Encryption/tree/master/C%2B%2B/RSA link]
 
Code From Github: [https://github.com/maxxboehme/Encryption/tree/master/C%2B%2B/RSA link]
Line 135: Line 133:
 
At first glance, the fastest function is also the function that appears like it would be the easiest to run on a GPU. The other code does not look like it can be optimized with a GPU easily as it does not use large arrays of N size. However, after some short internet research, several documents turned up on the topic of using a GPU to make RSA faster (example: [http://research.ijcaonline.org/volume87/number6/pxc3893704.pdf here] and [http://ijssst.info/Vol-15/No-3/data/3857a529.pdf here]). This leaves me hopeful that in the further stages of this assignment that this could be an interesting program to work with.
 
At first glance, the fastest function is also the function that appears like it would be the easiest to run on a GPU. The other code does not look like it can be optimized with a GPU easily as it does not use large arrays of N size. However, after some short internet research, several documents turned up on the topic of using a GPU to make RSA faster (example: [http://research.ijcaonline.org/volume87/number6/pxc3893704.pdf here] and [http://ijssst.info/Vol-15/No-3/data/3857a529.pdf here]). This leaves me hopeful that in the further stages of this assignment that this could be an interesting program to work with.
  
==Ryan Mullings: Program 2-Image Manipulation Processor ==
+
===Ryan Mullings: Program 2-Image Manipulation Processor ===
 
I decided to profile an Image manipulation program since it had many different functions that I could play around with. Also depending on the number of files you enter as arguments the processor will display different options
 
I decided to profile an Image manipulation program since it had many different functions that I could play around with. Also depending on the number of files you enter as arguments the processor will display different options
 
Source Code:[http://www.dreamincode.net/forums/topic/76816-image-processing-tutorial/ link to dream in code]
 
Source Code:[http://www.dreamincode.net/forums/topic/76816-image-processing-tutorial/ link to dream in code]
Line 169: Line 167:
 
Essentially, all of the functions are the main hotspots from the test runs.  
 
Essentially, all of the functions are the main hotspots from the test runs.  
  
=== Assignment 2 ===
+
== Assignment 2 ==
=== Assignment 3 ===
+
== Assignment 3 ==

Revision as of 10:01, 15 October 2015


GPU610/DPS915 | Student List | Group and Project Index | Student Resources | Glossary


Team Kappa

Team Members

  1. Ryan Mullings, Team Member
  2. Andy Cooc, Team Member
  3. Matt Jang, Team Member

Email All

Assignment 1

Program 1: RSA Encryption

Code From Github: link

Profiling

  • gprof: Encryption 10MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 60.48      1.50     1.50  3495254     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 32.66      2.31     0.81  3495254     0.00     0.00  findHighestSetBit(unsigned long long)
  4.44      2.42     0.11        1     0.11     2.48  encryption(std::string, std::string, std::string)
  2.42      2.48     0.06  3495254     0.00     0.00  intToByteArray(int, char*)
  0.00      2.48     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      2.48     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      2.48     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      2.48     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  • gprof: Encryption 20MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 63.65      3.27     3.27  6990507     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 29.04      4.75     1.49  6990507     0.00     0.00  findHighestSetBit(unsigned long long)
  3.90      4.96     0.20        1     0.20     5.13  encryption(std::string, std::string, std::string)
  3.41      5.13     0.17  6990507     0.00     0.00  intToByteArray(int, char*)
  0.00      5.13     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      5.13     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      5.13     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      5.13     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  • gprof: Encryption 30MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 68.04      5.11     5.11 10485760     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 25.23      7.00     1.90 10485760     0.00     0.00  findHighestSetBit(unsigned long long)
  3.99      7.30     0.30        1     0.30     7.51  encryption(std::string, std::string, std::string)
  2.73      7.51     0.20 10485760     0.00     0.00  intToByteArray(int, char*)
  0.00      7.51     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      7.51     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      7.51     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      7.51     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  • gprof: Decryption 10MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 69.80      1.71     1.71  3495254     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 21.63      2.24     0.53  3495254     0.00     0.00  findHighestSetBit(unsigned long long)
  6.12      2.39     0.15        1     0.15     2.45  decryption(std::string, std::string, std::string)
  2.45      2.45     0.06  3495254     0.00     0.00  intToByteArray(int, char*)
  0.00      2.45     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      2.45     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      2.45     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      2.45     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  • gprof: Decryption 20MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 64.11      3.38     3.38  6990507     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 27.18      4.82     1.44  6990507     0.00     0.00  findHighestSetBit(unsigned long long)
  4.73      5.07     0.25        1     0.25     5.28  decryption(std::string, std::string, std::string)
  3.98      5.28     0.21  6990507     0.00     0.00  intToByteArray(int, char*)
  0.00      5.28     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      5.28     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      5.28     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      5.28     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  • gprof: Decryption 30MB
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 66.88      5.25     5.25 10485760     0.00     0.00  fastModularExp(unsigned long long, unsigned long long, unsigned long long)
 24.59      7.18     1.93 10485760     0.00     0.00  findHighestSetBit(unsigned long long)
  5.73      7.63     0.45        1     0.45     7.85  decryption(std::string, std::string, std::string)
  2.80      7.85     0.22 10485760     0.00     0.00  intToByteArray(int, char*)
  0.00      7.85     0.00        1     0.00     0.00  _GLOBAL__sub_I__Z10encryptionSsSsSs
  0.00      7.85     0.00        1     0.00     0.00  _GLOBAL__sub_I_main
  0.00      7.85     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)
  0.00      7.85     0.00        1     0.00     0.00  __static_initialization_and_destruction_0(int, int)


Bottleneck Code

The two slowest parts of this encryption method are fastModularExp and findHighestSetBit. A third function, intToByteArray, takes up a relatively small amount of time but may still be able to be optimized.

unsigned int fastModularExp(ULong a, ULong b, ULong c) {
    ULong result = 1;
    ULong leadingbit = findHighestSetBit(b); // Heighest set bit
    while(leadingbit > 0){ //while there are bits left
        result = ((result*result) % c); //case 1: bit is a 0
        if((b & leadingbit) > 0){
            result = ((result * a) % c); //case 2: if bit is a 1
        }
        leadingbit = leadingbit >> 1;
    }
    return (unsigned int)result;
}
ULong findHighestSetBit(ULong num){
    ULong result = 0;
    for(int i = 63; i >= 0; i--){
        if(num & (1ULL << i)){
            result = 1ULL << i;
            return result;
        }
    }
    return result;
}
byte* intToByteArray(int num, byte *result){
    for(int i = 0; i < 4; i++){
        result[i] = (num & (0xFF << (8 *(3-i)))) >> (8 *(3-i));
    }
    return result;
}

At first glance, the fastest function is also the function that appears like it would be the easiest to run on a GPU. The other code does not look like it can be optimized with a GPU easily as it does not use large arrays of N size. However, after some short internet research, several documents turned up on the topic of using a GPU to make RSA faster (example: here and here). This leaves me hopeful that in the further stages of this assignment that this could be an interesting program to work with.

Ryan Mullings: Program 2-Image Manipulation Processor

I decided to profile an Image manipulation program since it had many different functions that I could play around with. Also depending on the number of files you enter as arguments the processor will display different options Source Code:link to dream in code

Sample Run

File

Code for some of the manipulations

File


Profiles

  • Profile for shrinking image by 2
  %   cumulative                   self     total           
 time   seconds    calls   s/call   s/call  name    
 40.22      5.75     2     0.00     0.00  Image(Image const&)
 27.53      3.32     1     0.00     0.00  readImage(char*, Image&)
 13.23      2.21     1     0.00     2.48  shrinkImage(int, Image&)
 12.67      2.11     1     0.00     0.00  Image(int, int, int)
  6.32      2.48     1     0.00     0.00  writeImage(char*, Image&)
  • Profile for Expanding image by 3 and Rotating by 20 degrees
  %   cumulative                   self     total           
 time   seconds    calls   s/call   s/call  name    
 64.28      11.23    1     0.00     0.00  rotateImage(Image const&)
 16.89      4.51     1     0.00     0.00  enlargeImage(char*, Image&)
 13.23      2.21     1     0.00     0.00  writeImage(int, Image&)

Essentially, all of the functions are the main hotspots from the test runs.

Assignment 2

Assignment 3