Difference between revisions of "Fall 2019 SPO600 Weekly Schedule"

From CDOT Wiki
Jump to: navigation, search
(Week 2 - Class II)
(Tags: Mobile edit, Mobile web edit)
(Week 2 Deliverables)
Line 183: Line 183:
* Blog your results and conclusion to [[SPO600 Code Review Lab|Code Review Lab (Lab 1)]] and [[SPO600 Compiled C Lab|Compiled C Lab (Lab 2)]]
* Blog your results and conclusion to [[SPO600 Code Review Lab|Code Review Lab (Lab 1)]] and [[SPO600 Compiled C Lab|Compiled C Lab (Lab 2)]]
* Blog about your initial work on [[SPO600 Assembler Lab|Lab 3]].
* Blog about your initial work on [[SPO600 Assembler Lab|Lab 3]].
* Set up your account on the [[SPO600_Communication_Tools#Slack Seneca Open Source Slack Workspace]].

Revision as of 10:39, 11 September 2019

This is the schedule and main index page for the SPO600 Software Portability and Optimization course for Fall 2019.

It's Alive!
This SPO600 weekly schedule will be updated as the course proceeds - dates and content are subject to change. The cells in the summary table will be linked to relevant resources and labs as the course progresses.

Schedule Summary Table

This is a summary/index table. Please follow the links in each cell for additional detail which will be added below as the course proceeds -- especially for the Deliverables column.

Week Week of... Class I
Tuesday 1:30-3:15
Room B1024
Class II
Friday 11:40-1:25
Room K1263
(Summary - click for details)
1 Sep 2 Introduction / How is code accepted into an open source project? (Lab 1) / Computer Architecture Overview Compiled C Lab (Lab 2) Set up accounts.
2 Sep 9 Intro to Assembler / Using Makefiles Assembler Lab (Lab 3) Blog your conclusion to Labs 1 and 2, and blog about your initial work on Lab 3.
3 Sep 16 Sysadmin for Devs Assembler Lab (Lab 3) Continued Blog about Lab 3.
4 Sep 23 Computer Resources and Performance / Baseline Builds / Benchmarking and Profiling Software Build Lab (Lab 4) Blog your Lab 4 results.
5 Sep 30 Binary Representation of Data Algorithm Selection (Lab 5) / Inline Assembler Blog your lab 5 results.
6 Oct 7 SIMD and Vectorization / Inline Assembler Investigation: Inline Assembler (Lab 6) Blog your lab 6 results.
7 Oct 14 Projects! Project selection Catch up on any missed labs, blog about your project selection progress.
Oct 21 Reading Week
8 Oct 28 Intrinsics and SIMD Project Hacking Blog blog about your project.
9 Nov 4 Atomics Project Hacking Blog about your project.
10 Nov 11 Memory Ordering / Barriers / Acquire-Release Semantics Project Hacking Blog about your project.
11 Nov 18 ifunc Project Hacking Blog about your project.
12 Nov 25 Projects Project Hacking Blog about your project.
13 Dec 2 Projects Wrap-up Discussion Blog about your project.
Exam Dec 9 Exam Week - No exam in this course!


Category Percentage Evaluation Dates
Communication 20% September (5%), October (5%), November (5%), end of course (5%).
Quizzes 10% May be held during any class, usually at the start of class. A minimum of 5 one-page quizzes will be given. No make-up/retake option is offered if you miss a quiz. Lowest 3 scores will not be counted. Students with Test Centre accommodations may choose to write the quizzes in the class, or alternately write a monthly quiz in the Test Center.
Labs 10% See deliverables column above. All labs must be submitted by the end of the course, but it is best if you stay on top of the labs and submit according to the table above.
Project work 60% 3 stages: 15% (Nov 1), 20% (Nov 22), 25% (Dec 11).

Week 1

Week 1 - Class I

Introduction to the Problems

Porting and Portability
  • Most software is written in a high-level language which can be compiled into machine code for a specific computer architecture. In many cases, this code can be compiled for multiple architectures. However, there is a lot of existing code that contains some architecture-specific code fragments written in architecture-specific high-level code or in Assembly Language.
  • Reasons that code is architecture-specific:
    • System assumptions that don't hold true on other platforms
    • Code that takes advantage of platform-specific features
  • Reasons for writing code in Assembly Langauge include:
    • Performance
    • Atomic Operations
    • Direct access to hardware features, e.g., CPUID registers
  • Most of the historical reasons for including assembler are no longer valid. Modern compilers can out-perform most hand-optimized assembly code, atomic operations can be handled by libraries or compiler intrinsics, and most hardware access should be performed through the operating system or appropriate libraries.
  • A new architecture has appeared: AArch64, which is part of ARMv8. This is the first new computer architecture to appear in several years (at least, the first mainstream computer architecture).
  • At this point, most key open source software (the software typically present in a Linux distribution such as Ubuntu or Fedora, for example) now runs on AArch64. However, it may not run as well as on older architectures (such as x86_64).
Benchmarking and Profiling

Benchmarking involves testing software performance under controlled conditions so that the performance can be compared to other software, the same software operating on other types of computers, or so that the impact of a change to the software can be gauged.

Profiling is the process of analyzing software performance on finer scale, determining resource usage per program part (typically per function/method). This can identify software bottlenecks and potential targets for optimization.


Optimization is the process of evaluating different ways that software can be written or built and selecting the option that has the best performance tradeoffs.

Optimization may involve substituting software algorithms, altering the sequence of operations, using architecture-specific code, or altering the build process. It is important to ensure that the optimized software produces correct results and does not cause an unacceptable performance regression for other use-cases, system configurations, operating systems, or architectures.

The definition of "performance" varies according to the target system and the operating goals. For example, in some contexts, low memory or storage usage is important; in other cases, fast operation; and in other cases, low CPU utilization or long battery life may be the most important factor. It is often possible to trade off performance in one area for another; using a lookup table, for example, can reduce CPU utilization and improve battery life in some algorithms, in return for increased memory consumption.

Most advanced compilers perform some level of optimization, and the options selected for compilation can have a significant effect on the trade-offs made by the compiler, affecting memory usage, execution speed, executable size, power consumption, and debuggability.

Build Process

Building software is a complex task that many developers gloss over. The simple act of compiling a program invokes a process with five or more stages, including pre-proccessing, compiling, optimizing, assembling, and linking. However, a complex software system will have hundreds or even thousands of source files, as well as dozens or hundreds of build configuration options, auto configuration scripts (cmake, autotools), build scripts (such as Makefiles) to coordinate the process, test suites, and more.

The build process varies significantly between software packages. Most software distribution projects (including Linux distributions such as Ubuntu and Fedora) use a packaging system that further wraps the build process in a standardized script format, so that different software packages can be built using a consistent process.

In order to get consistent and comparable benchmark results, you need to ensure that the software is being built in a consistent way. Altering the build process is one way of optimizing software.

Note that the build time for a complex package can range up to hours or even days!

General Course Information

  • Course resources are linked from the CDOT wiki, starting at https://wiki.cdot.senecacollege.ca/wiki/SPO600 (Quick find: This page will usually be Google's top result for a search on "SPO600").
  • Coursework is submitted by blogging.
  • Quizzes will be short (1 page) and will be held without announcement at any time, generally at the start of class. There is no opportunity to re-take a missed quiz, but your lowest three quiz scores will not be counted, so do not worry if you miss one or two.
    • Students with test accommodations: an alternate monthly quiz is available in the Test Centre. See the professor for details.
  • Course marks (see Weekly Schedule for dates):
    • 60% - Project Deliverables
    • 20% - Communication (Blog and Wiki writing)
    • 20% - Labs and Quizzes (10% labs - completed/not completed; 10% for quizzes - lowest 3 scores not counted)
  • All classes will be held in an Active Learning Classroom -- you are encouraged to bring your own laptop to class. If you do not have a laptop, consider signing one out of the Learning Commons for class, or using a smartphone with an HDMI adapter.
  • For more course information, refer to the SPO600 Weekly Schedule (this page), the Course Outline, and SPO600 Course Policies.

Course and Setup: Accounts, agreements, servers, and more

How open source communities work

Week 1 - Class II

  • Compiler Operation
    • Stages of Compilation
      1. Preprocessing
      2. Compiling
      3. Assembling
      4. Linking
  • Analyzing compiler output
    • Disassembly
  • Compiled C Lab (Lab 2)

Week 1 Deliverables

  1. Course setup:
    1. Set up your SPO600 Communication Tools - in particular, set up a blog and add it to Planet CDOT (via the Planet CDOT Feed List).
    2. Add yourself to the Current SPO600 Participants page (leave the projects columns blank).
    3. Generate a pair of keys for SSH and email the public key to your professor, so that he can set up your access to the class servers.
    4. Optional (strongly recommended): Set up a personal Linux system.
    5. Optional: Purchase an AArch64 development board (such as a 96Boards HiKey or Raspberry Pi 3 or 4. (If you use a Pi, install a 64-bit Linux operating system on it, not a 32-bit version).
  2. Complete Lab 1 and write it up on your blog.

Week 2 - Class I

Week 2 - Class II

Week 2 Deliverables