Changes

Jump to: navigation, search

ARMv8

64 bytes added, 13:57, 7 February 2020
Confusing Numbering Schemes
* Early ARM chips had numbers that were different from the corresponding architecture levels. For example, the ARM11 processor is an ARMv6 chip, which is much lower-performing than other parts with lower numbers, including the ARMv7-level Cortex-A5, -A7, -A8, and -A9 devices.
* Cortex designations are not in order of release date, features, or power consumption, and are only loosely in order by performance. Cortex-A8 (single-core only) and Cortex-A9 (available in single- and multi-core) are some of the older designs in the series; Cortex-A15 chips add hardware virtualization support. The ARMv7 (32 bit) Cortex-A12, Cortex-A7, and Cortex-A5 designs followed, with varying power/performance profiles. Cortex-A35, -A53, -A55, -A57, -A72, -A73, -A75, and -A76 chips are ARMv8A.
* Other companies have introduced chips with confusingly similar designations. The Apple A7 chip is /A8/A9/A10/... chips are not an ARM design designs and has have nothing to do with the similarly-named Cortex-A7 /-A9/... (or any other Cortex corecores); it the Apple A7, for example, is roughly in the same performance category as a dual-core Cortex-A53. Allwinner and AMD have also used chip designations starting with A (Allwinner A10, A20, and A80, and AMD Opteron A1100, for example); these are unrelated to the Apple A-series chips and to the Cortex A designations. Likewise, the Nvidia K1 is unrelated to the AMD K12.
== big.LITTLE ==

Navigation menu