Parallelisation in Game Engines

By: Daniel Kerr

Why do we need'parrallisation?

 Early games didn’t need it
* Modern games are more intensive

e 60Hz - 144Hz refresh rates
e Optimizing performance

Pa_mrallism| 1. Types

 Task Parallism e Data Parallism
- Different things at once — One thing lots of times
- Moving with Collision Detection - Using Vertex Shaders

VERTEX SHADER = Al y GEOMETRY SHADER

VERTEX DATA[]

FRAGMENT SHADER

“Game Loop

Loop that handles gameplay

Handling HIDs
Update game states
Calls render jobs

Elvoi
)
I
{

i
W

id main() {

nit();

hile (true){ Same
readHumanInterfaceDevice();
if (quitRequest()) {

break; =

}
pollEvents();
update();
handleEvents();

render();

Parrallelisation'Options

* One Thread per Subsystem
- Main thread spawns subsystems
- Not scalable with hardware
- Waisted compute time

Pipelining!

Frame #1 | Frame #3

Frame #2

Update thread: Update Update Update

Game state buffer: o State = State e State

Render thread: Render m Render m Render

Pa_rralIelisa.tiqm@)pt-ions

* Fork / Join
- Next logical step
- Spawn threads as needed
- Expensive

Parallel work

Serial work Parallel work Serial work

Parallel work

e Optimization
- SIMD design
- Vectorize loops

- Thread Pools

Thread . Pools

e Spawn threads at start
e Scaleable to hardware
e Difficult to maintain

Task Queue

- [([(@@@@@@© — O _l
vl (e)([e]|[e) (=) [)|[e)

Completed Tasks |
-~((@@@© «— O

e Job System
- Queue datastructure
- Jobs work independantly
— Arbitrarily fine-graned
- Highly scalable

- Kick
- Wait
- Sleep
- Wait
* Priority

e | ocks

"« Cannot sleep with simple
job implementation

 Have to fully context switch

Ray Origin

@\HW Direction
I

-
= -

Ray Distance

-

Y

z "y
|é x World Coordinates

e Coroutines e Fibers

- Yield to another coroutine with - Widely used
explicit call - Never scheduled by kernel
 Job Counters - Cooperatively scheduled by
- Track jobs running members

- Essentially Fork / Join
- Good for batch jobs

Working withithe'GPU

M/ Vertex Specification
e Shaders v

Vertex Shader

GLSL Yoo

| Tessellation |

* Send manageable 25 T "

amounts of data | Geometry Shader |
e Keep O(1) execution time

Vertex Post-Processing

.

Primitive Assembly

.

Rasterization

Per-Sample Operations

Thank you for watching

