
 Parallelisation in Game Engines

By: Daniel Kerr

• Early games didn’t need it
• Modern games are more intensive
• 60Hz - 144Hz refresh rates
• Optimizing performance

• Task Parallism
– Different things at once
– Moving with Collision Detection

• Data Parallism
– One thing lots of times
– Using Vertex Shaders

• Loop that handles gameplay
• Handling HIDs
• Update game states
• Calls render jobs

• One Thread per Subsystem
– Main thread spawns subsystems
– Not scalable with hardware
– Waisted compute time

• Fork / Join
– Next logical step
– Spawn threads as needed
– Expensive

• Optimization
– SIMD design
– Vectorize loops
– Thread Pools

• Spawn threads at start
• Scaleable to hardware
• Difficult to maintain

• Job System
– Queue datastructure
– Jobs work independantly
– Arbitrarily fine-graned
– Highly scalable

• Methods
– Kick
– Wait
– Sleep
– Wait

• Priority
• Locks

• Cannot sleep with simple
job implementation

• Have to fully context switch

• Coroutines
– Yield to another coroutine with

explicit call

• Job Counters
– Track jobs running
– Essentially Fork / Join
– Good for batch jobs

• Fibers
– Widely used
– Never scheduled by kernel
– Cooperatively scheduled by

members

• Shaders
• GLSL
• Send manageable

amounts of data
• Keep O(1) execution time

Thank you for watching

