
OPS 102
OPERATING SYSTEMS for PROGRAMMERS

Software Management

Chris Tyler



Software Developers have Unique Needs

Software developers have special software needs which are different 
from normal computer users. Our needs include:

• Development tools: editors, debuggers, testing tools, version control 
systems, and performance profilers

• Libraries and Modules, often in multiple versions

• Headers for Libraries



Development vs. Production

• Once software has been developed, it is deployed to the 
production systems on which it will be used. (These systems may be 
individual client PCs, servers, or other devices).

• Development and production contexts are often very different!



Development vs. Production Environments
Development Environment Production Environment

Many versions of the software exist in parallel. For 
example, there may be a stable version which has 
been released and for which only bug fixes are being 
developed, and one or more pre-release versions, for 
which major enhancements are under development.

Only one version of the software is usually installed 
on production systems.

Source code, header files, developer's 
documentation, and version control information are 
present alongside the built software.

Only the built software is normally present
(executable programs, user documentation, and 
program assets such as graphics, fonts, and sample 
data).

The software is often written, built, and tested in the 
software developers' personal workspace (i.e., within 
their home directory). Software developers may or 
may not have system administration capabilities.

The software is installed in system directories which 
are not writable by normal users (or, the software is 
installed and operated in containers). Installation, 
updating, and removal of the software may only be 
performed by users with system administration 
capabilities.

… is managed by Software Developers. … is managed by System Administrators.



An Industry Saying

Beware of programmers who carry screwdrivers.
― Leonard Brandwein



Respect

• Software Development and System Administration are complimentary 
disciplines. A wise practitioner of either discipline respects the skilled 
practitioners of the other discipline!

• These meet in the interdisciplinary art of "DevOps".



Shared Libraries

• Library files (collections of functions / methods / procedures / 
subroutines) that are accessed by binary executables at runtime 
(when the program is executed).

• Same concept, different names:

• Linux: Shared Object file (.so)

• Windows: Dynamic Link Library (.dll)

• MacOS: Dynamic Library (.dylib) and Shared Object file (.so)



Shared Libraries

• Shared libraries provide three main benefits:

1. Reduced memory consumption when multiple programs use the same 
version of the same library (just one copy of the library is loaded regardless 
of the number of programs using that library)

2. Reduced storage requirements because the library contents are not copied 
into each executable file, increasing their size

3. Independent updating of libraries and executables – libraries can be 
updated as new versions become available (e.g. bug fixes and security 
improvements), and programs will access the updated versions the next 
time they are executed



Shared Libraries

• Shared libraries present three main challenges:

1. Version conflicts may exist between different versions of the same libraries

2. Multiple copies of libraries may be installed in different directories on the 
system

3. It can be difficult to track dependencies - which libraries (and which 
versions) are needed by each piece of software



Installation Scopes

• System (or Machine)
• Software is installed in system directories that are protected (regular users 

cannot write to these directories).

• User
• Software is installed in a user's home directory (or subdirectories of their 

home directory).



System Software Directories in Windows

• Executables
• C:\Program Files, C:\Program Files (x86)
• C:\Windows\System, C:\Windows\SysWOW64

• Libraries
• C:\Program Files, C:\Program Files (x86)
• C:\Windows\System, C:\Windows\SysWOW64

• Header Files
• C:\Program Files, C:\Program Files (x86)

. . . Executables and libraries are usually in the same directory on Windows



System Software Directories in Linux

• Executables
• /bin, /usr/bin
• /sbin, /usr/sbin

• Shared Libraries
• /usr/lib, /usr/lib64

• Header Files
• /usr/include

. . . Executables and libraries have their own directories on Linux



Demo

Let's take a tour

of the system directories

on both Linux and Windows . . .



Packaging Systems

• Software files can be collected along with metadata (including 
dependency information) in a package file.

• Package management software can then install these packages, using 
a local database on the system to track all of the installed software.

• A combination of software and online software repositories enable 
automated package retrieval, dependency resolution, and software 
updating.



Packaging Systems - Linux

• There are multiple system-level packaging systems in use in Linux. The 
two most popular file formats are rpm and deb (these names refer 
both to the package extension and the name of the software that 
manages those packages).

• An additional layer of software (yum/dnf for rpm-based systems and 
apt for deb-based systems) handles interactions with online 
repositories including package retrieval, dependency resolution, and 
software updating.

• Various programs are available to provide a GUI for yum/dnf and apt.



Package Management - Linux

Let's see system package management on

a Linux system in action . . .



Packaging Systems - Windows

• MSI (from "Microsoft Installer") is the traditional package format used 
on Windows; MSIX (from "Microsoft Installer XML") is an evolved 
version of MSI now used on Windows.

• It has also been popular to package Windows software as self-
installing .exe files – the software is distributed as an executable 
binary that also contains an archive of the software which it installs 
when run. Since the executable file cannot be readily verified, this is 
considered an unsafe way to install software (compared to using an 
MSIX file) - nonetheless, it is still a popular approach.



Packaging Systems - Windows

• The Microsoft Store is a type of repository which can be accessed by 
the Microsoft Store app (WinStore.App.exe).

• The winget command is a built-in Windows CLI tool which will search, 
install, and remove package from the Microsoft Store as well as the 
winget repositories. Many open source software packages are 
available this way. By default, winget will try to install with a User 
scope, but this can be changed with the "--scope machine" argument.

• There is a third-party GUI available for winget called WingetUI.



Demo: WINGET

Let's see WINGET in action:

o winget search string

o winget show package

o winget install package

o (test Gimp)

o winget uninstall package



Building and Installing Open Source Software

• Most open source software can be built fairly easily as long as the 
required tools, libraries, and headers are available.

• Since it can't be installed into the system directories without 
administrator capabilities, it will need to be installed into your home 
directory (~ on Linux or %HOME% on Windows).



Demo: Building and Installing wget

Let's see an open source

package being built and installed.



PATH and LD_LIBRARY_PATH

• When needed, you can adjust your PATH environment variable so that 
programs installed in new locations can be found.

• If you need to install shared libraries in new locations, you can also 
add the directories containing those libraries to PATH (Windows) or to 
LD_LIBRARY_PATH (Linux)


