

Increase in cost per bit

Increase in Capacity & Access Time

CPU
Registers — \ - LEVELO
Cache Memory \ . LEVEL 1
(SRAMs) L

Main Memory \ . LEVEL 2
(DRAMSs) \

Magnetic Disk \ 8
(Disk Storage)

Optical Disk

Magnetic Tape

Memory

Controller

Shock resistant up to 350g/2ms Shock resistant up to 1500g/0.5ms

I o

PV

’ " | _m{vv-):

==
-
=
3
&
E
=
g
=
—
=
=3
B
{1
3
=
g
-
=

CPU '13 2930-04
STL82Ck MALAY
3.80GHZ/8M/6.40
453018295 s2

ere
- ‘“cache miss” if data is not there

the near future

Spatial Locality

- nearby memory locations of an accessed memory location will likely be
o needed in the near future

\\)CACHE COHERENCE & CACHE LINE

O SHARED MEMORY
[X:24]
CACHE 1 CACHE 2

SHARED BUS

- cache lines are blocks of memory transferred to
the cache
- requires data synchronization

SOrsS
Thread 0 Thread 1 n the
CPU D CPU1 ,
I I ame piece
h Cache Line i{j ache Line ¥ mqin’rained on
e basis
Mtache _Z\A Cache odified shared cache lines
I I become invalidated or “dirty”

Y

>

"~ memory affecting performance

- must fetch updated data from

FALSE SHARING IN WORKSHOP 2

int actual thread count;

double pi = @.@af;
double sum[NUM_THREADS] = { @.ef }; Promote sum to an array

double step = 1.8 / (double)n;

omp_set _num_threads{NUM_THREADS);
#pragma omp parallel

{

int id, num_threads;
double x:

= omp_get thread num();
num_threads = omp_get num_threads();

/f get master thread to return how many threads were actually created
if (id == @)
{

}

actual thread count = num_threads;

{/ each thread is responsible for calculating the area of a specific set of sections underneath the curve
for {(int i = id; i < n; 1 = 1 + num_threads)
{

* = ({double)i + @.5f) * step;

sum[id] += 1.8f / (1.ef + x * x); <+<— Threads store their calculations in their own

element of the array

¥

// sum up each calculation to get approximation of pi
for {(int i = 8; i < actual thread count; i++)

{
¥

pi += 4 * sum[i] * step;

Naive Implementation

1080

657
452 442 I
3 4 5 6

Number of Threads

)
©
c
o
o
QL
2
=
Q
=
=
c
®]
S
35
O
Q
x
L

4

4

arrays are a contiguous block

of memory in C++

nearby elements of the array
are brought into cache due to
spatial locality

likely share the same cache line
causing false sharing

Naive Implementation’'s Array

arr[0] an1] ar2] arr3] an4] ana] arna] ar7]

Padded Implementation's Array
Padding = 15
(

arr[01[0]

64 Bytes

arr[1][0]

arr7][0]

DRAWBACKS WITH PADDING

Execution Time (Milliseconds)

Padded Implementation

559 554
414
333 316 312
I I I 274
1 2 3 4 5 6 7

Number of Threads

4

4

must know cache line size to /!

accurately pad the array
wasted memory space used for
padding

hogging valuable cache space

| "SYNCHRC VARIABLES

#pragma omp parallel

Synchronized Implementation

int id, num_threads;
double x, sum = 8.8f;

700
id = omp_get thread num();)
num_threads = omp_get_num_threads(); _g 600 572
o
// get master thread to return how many threads were actually created 8
if (id == @) L 500
t =
actual_thread_count = num_threads; > 400
} =
g 284
// each thread is responsible for calculating the area of a specific set of sections underneath the curve = 300
for (int i = id; i < n; 1 = 1 + num_threads) - 200 189
o
x = ((double)}i + 8.5f) * step; s} 143 118
sum += 1.8f / (1.ef + x * x); 3 99 93 90
3 o 100
x
(NN
#pragma omp critical 0 l l l
{
‘ [/ sum up each calculation to get approximation of pi 1 2 3 4 5 6 7 8

pi += 4 * sum * step;

Number of Threads

