
ICT - Chris Szalwinski October 8 2015 1

ICT Programming Curriculum Meeting Notes

October 8 2015

Revised Agenda

0) Meeting Notes – September 8 2015

1) Subject Outlines

OOP345
BTP305

 DSA555
BTP500
Revising Outlines:

Subject Descriptions and Learning Outcomes
Topics, Evaluations, Reference Material
Timelines, Workshop Learning Outcomes

2) Core Programming Subjects Update

IPC144
BTP100
OOP244
OOP345
BTP305
Material Allowed on Tests and the Final Exam
Continuing Education Conflicts

3) Working Groups
 C++ Idioms

C++ Best Practices
 Mapping Topics to Core Literacies

4) Other Business

ICT - Chris Szalwinski October 8 2015 2

Meeting Notes – September 8 2015

Attendees: Peter McIntyre, Ian Tipson, Catherine Leung, Tim McKenna, Mark Fernandes, Elnaz

Delipsheh, Fardad Soleimanloo, Patrick Crawford, Greg Blair, Sunny Shi, Mary Lynn Manton, Chris

Szalwinski

Agenda Approved

http://zenit.senecac.on.ca/wiki/imgs/Start-Up_Meeting_September_8_2015.pdf

Meeting Notes for Sep 8 will be approved unless objections submitted before October 15 2015.

Subject Outlines

OOP345 – Object Oriented Software Development Using C++

Subject Description (no proposed changes)

“This subject expands the student's skill-set in object-oriented programming and introduces the student

to threaded programming. The student learns to model relationships between classes using containers,

inheritance hierarchies and polymorphism in the C++ programming language and to write C++ programs

that execute on multiple threads.”

Learning Outcomes

– make LOs more specific

– replace raw pointers and pointer arithmetic with smart pointers

 Design collections of model objects using sequential containers and multi-dimensional arrays to
solve organize the elements of a programming solution to a systems or business problem

 Create function objects and closures to customize a programming solution an algorithm for a
particular application systems or business task

 Model generalization and specialization using inheritance hierarchies to minimize the
duplication of code

 Model polymorphic behavior using interfaces, virtual functions and templates (generics) to
amplify the reusability of code enable adaption of a programming solution to an evolving class
of systems or business problems

 Implement design components algorithms using algorithms of the standard template library to
utilize existing technologies simulate the solution of a systems or business problem

 Create program components algorithms of quadratic complexity to solve non-linear problems

 Design Implement access to model objects program components using raw smart pointers and
pointer arithmetic to access data in program memory manage their lifetimes

 Design multi-tasked solutions using threading libraries to improve the performance of a
program

 Design file stream objects to backup text and binary data for future restoration

http://zenit.senecac.on.ca/wiki/imgs/Start-Up_Meeting_September_8_2015.pdf

ICT - Chris Szalwinski October 8 2015 3

BTP305 – Object Oriented Software Development Using C++

Subject Description (no proposed changes)

“This subject expands the student's skill-set in object-oriented programming and introduces the student

to threaded programming. The student learns to model relationships between classes using containers,

inheritance hierarchies and polymorphism in the C++ programming language and to write C++ programs

that execute on multiple threads.”

Learning Outcomes (proposed changes)

 to make LOs more specific

 to place stress smart pointers over raw pointers and pointer arithmetic?

 Design collections of model objects using sequential containers and multi-dimensional arrays to
solve organize the elements of a programming solution to a complex systems or business
problem

 Create function objects and closures to customize a programming solution an algorithm for a
particular application systems or business task

 Model generalization and specialization using inheritance hierarchies to minimize the
duplication of code in complex hierarchies

 Model polymorphic behavior using interfaces, virtual functions and templates (generics) to
amplify the reusability of code enable adaptation of a programming solution to an evolving class
of systems or business problems

 Implement design components algorithms using algorithms of the standard template library to
utilize existing technologies simulate the solution of a systems or business problem

 Create program components algorithms of quadratic complexity to solve non-linear problems

 Design Implement access to model objects program components using raw smart pointers and
pointer arithmetic to access data in program memory manage their lifetimes

 Design multi-tasked solutions using threading libraries to improve the performance of a
program

 Design file stream objects to backup text and binary data for future restoration

 Trace the execution of program code that includes a linked list to debug an application

 OOP345 and BTP305 Discussion
 Should Multi-Dimensional Arrays be included in LOs or just the topic list

o Dynamic allocation in the topic list as optional, not in Los
 Customize an algorithm

o Decided this scope includes STL algorithms
 Proposed revisions to the OOP345 and BTP305 LOs approved

DSA555 – Data Structures and Algorithms

Topic list has been updated to align better with OOP345 (Sept 10 2015)

ICT - Chris Szalwinski October 8 2015 4

Still to be done

 Formulate a comprehensive set of learning outcomes

 Consider 2 Lecture +2 Lab Mode of instruction

Subject Description – should we remove C++ STL | should we simplify the description?

“What makes a piece of code "good"? What is the best way to represent data? How do we determine

the efficiency of our programs? Students taking this subject will learn to write and apply standard

algorithms and data structures to real programming problems. They will learn how an algorithm's

efficiency is measured. The features and limitations of a number of data structures and situations when

they should be employed will be discussed. Aside from traditional structures and algorithms, students

will also learn about related topics including: encryption algorithms, heuristic searches, and information

retrieval. Additionally students will be introduced to the C++ Standard Template Library.”

 Cathy agrees to removing C++ STL

Learning Outcomes – will need to update to meet Seneca QA Standards

 EnIncorporate data structures into the applications they write

 Implement searching and sorting algorithms

 Create their own data structures

 Determine which algorithm or data structure to use in different situations

BTP500 – Data Structures and Algorithms

Still to be done

 Formulate a comprehensive set of learning outcomes

 Consider 2 Lecture + 2 Lab Mode of instruction

Compare and contrast with DSA555 above

Topic list needs slight realignment to BTP305

Subject Description – is this description satisfactory?

“In this course, the student learns to write and apply, to real programming problems, the classical data

structures and algorithms from computer science, such as searching and sorting algorithms, stacks,

queues, linked lists and trees. Algorithm efficiency, encryption algorithms, randomized algorithms and

heuristic search are among other topics investigated. The C++ Standard Template Library and the Java

libraries are also looked at, as examples of data structure implementation.”

Learning Outcomes – will need to update to meet Seneca QA Standards

 methodically test and debug complex Java and C++ programs

 analyze a programming problem in order to determine the suitability of implementing a
variation on a well-known data structure or algorithm as part of the solution

 compare the relative efficiencies of competing algorithms

 determine the shortcomings or limitations of a particular data structure or algorithm

ICT - Chris Szalwinski October 8 2015 5

 use the data structures provided in the standard Java and C++ libraries

 describe the features and limitations of a particular data structure or algorithm

 implement variations of well-known data structures and algorithms using Java and C++

 identify, through the application of research techniques, and use in a programming solution,
well known data structures or algorithms not specifically covered in class

 produce technical and usage documentation for data structures/algorithms developed

 DSA555 and BTP500 Discussion
 Ian – success rate in both courses is pretty good, so “if it ain’t broke, don’t fix it”

 Cathy will do the LOs for DSA555 and will meet with Lew Baxter to discuss BTP500 LOs
 Cathy does not mind 2 Lectures + 2 Labs, but does not want to be activity-restricted

o Peter suggested use of active learning classrooms as an option
o Initial conclusion is 4 hours in the classroom is OK

 Associative Containers: Map and Hash discussion – where to put it
o Add to STL in 345/305 or add STL Associative Containers to 555/500
o We really don’t have room in 345/305
o Initial conclusion leave STL Associative Containers out of the curriculum

 Peter and Ian – promote and encourage all CPA students to take DSA as one of their pro options
 BTP500 – Complexity Theory

o BSD Consent renewal requested an appropriate balance of theory and practice: “To improve

coverage of algorithmic complexity, the program will increase the accountability, emphasis

and awareness of this important topic. This enhancement to the curriculum will begin in the

summer 2014 term, with BTP500 – Data Structures and Algorithms course”
o Chris suggested that a bit more than one week be spent on this topic

Revising Outlines (FYI)

Individual Subjects

Faculty initiative -> QA approval -> Chair Approval -> Posting

o Chris – this is separate from the topic list, etc. – voted in Curriculum meetings

Topic List, Evaluations, Reference Material

Participating faculty initiative (week 7) -> Coordinator approval -> Posting

o Peter – deadline for faculty recommendations is end of Week 10 (Nov 18 2015)

Timeline, Workshop Learning Outcomes

Participating faculty initiative (week 0) -> Posting

ICT - Chris Szalwinski October 8 2015 6

o Chris – touchy point – workshop LOs to be decided by multi-section faculty by week 0 – all of

us need to recognize the flow of content through each course and with respect to the set of

core courses – workshop LOs are not open to revision by individual faculty who are expected

to abide by the initial multi-section decision

o Timeline Posted Start of Week 10 (Nov 18 2015)

 Proposed vs Mandatory – part of contract with the students – hence: Mandatory

 Individual faculty to communicate variations to students caused by scheduling and

holiday conflicts

Core Programming Subjects Update

OOP244 – Introduction to Object Oriented Programming

Web Site Dynamic Component (Workshops, Final Project, Instructors)

 Redirection to the current Semester’s Content

 https://scs.senecac.on.ca/~oop244/dynamic/workshops/index.html

Experience with Interactive Scripts for Workshops and the Final Project

 Workshop and Final Project Submission Scripts
o Fardad has designed an interactive script for submitting workshops and assignments

 Script compiles source code, reports warnings and errors, compares execution

output to expected output and submits the source code to the instructor only if

every check passes
 Students continue to work on source code until script allows submission
 Script displays the output lines that are unexpected to facilitate debugging
 Instructor prepares the configuration file for each workshop and the final project

o Chris reviewed his experience after teaching one of Fardad’s classes – most students stayed

until the end and kept working to meet the script’s requirements – recommends using this

script in all core programming courses
o Fardad outlined usage of the script
o Cathy requested a copy of the script

Evaluation Weights for the Winter Semester

 Faculty decided to retain the evaluation weights for the Winter semester

 Fall - OOP244 Winter - OOP244

Final Project 20% 20%

Workshops/Lab Work 30% 30%

Quizzes 15% 15%

Midterm Test 25% 25%

Final Exam 10% 10%

https://scs.senecac.on.ca/~oop244/dynamic/workshops/index.html

ICT - Chris Szalwinski October 8 2015 7

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

 See below

BTP200 – The Object-Oriented Paradigm Using C++

Web Site Dynamic Component (Workshops, Final Project, Instructors)

 Redirection to the current Semester’s Content

 https://scs.senecac.on.ca/~btp200/dynamic/workshops/index.html

Evaluation Weights for the Winter Semester

 Recommendations
o Chris – should we align BTP200 with OOP244 (esp. low exam weight)
o Olivier – teaching in the Winter – prefers 20% for final - keep the summer weights or move

5% from the mid-term to the final project for 50/50 distribution
o Peter – prefers 20% final for this BSD course
o Ian – no problem with 20% for the Final Project
o No further discussion

 Summer – BTP200 Winter – BTP200

Final Project 15% 20%

Workshops/Lab Work 30% 30%

Quizzes 15% 15%

Midterm Test 20% 15%

Final Exam 20% 20%

Experience with Interactive Scripts for the Final Project

 Recommendation
o Chris – found Fardad’s scripts extremely useful to the students for the final project

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

 OOP244 and BTP200 Discussion

 Use of IDE’s in the Core Courses

https://scs.senecac.on.ca/~btp200/dynamic/workshops/index.html

ICT - Chris Szalwinski October 8 2015 8

o Chris
 Need to expose students to Windows and Linux platforms

 Getting more difficult to access the Visual Studio command line

 IDEs such as VS facilitate debugging – we have been discussing introducing

debugging for many semesters – this is one way to incorporate it

o Cathy – gdb is enough – objectionable mutterings for some – no second
o Ian – Visual Studio has won the battle of the IDE’s
o Olivier – personally would not use Visual Studio to teach BTP200 – doesn’t like VS and thinks

it is a little too complex for what students have to do – uses CentOS with GNOME editor and

clang++ compiler – likes CodeBlocks
o Fardad – has been using VS for many semesters
o No overall strong objection to IDEs – no recommendation agreed

IPC144 – Programming Fundamentals Using C

Web Site Dynamic Component (Workshops Assignments, Instructors)

 Redirection to the current Semester’s Content

 https://scs.senecac.on.ca/~ipc144/dynamic/workshops/index.html

 Not discussed

Weekly Coordination Meetings

 …

 Not discussed

Evaluation Weights for the Winter Semester

 Ian – weak students learn the material over several semesters: no trouble passing weak ones

 Cathy wants definite values (not ranges) – values must be exactly divisible by no of deliverables

 Agreed to a Final Project with milestones instead of distinct assignments (copying OOP244)

 Cathy wants to go back to IPC144 Winter instructors for approval (only Pat and Cathy present)

 Fall - IPC144 Winter – IPC144 Fall - OOP244

Assignments 30% 20% 20%

Workshops/Lab Work 15% to 20% 30% 30%

Quizzes 5% to 10% 15% 15%

Midterm Test 15% 25% 25%

Final Exam 30% 10% 10%

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

https://scs.senecac.on.ca/~ipc144/dynamic/workshops/index.html

ICT - Chris Szalwinski October 8 2015 9

 See above – no consensus reached

Proposal to Reformat the Delivery

 …

 Not discussed

BTP100 – Programming Fundamentals Using C

Web Site Dynamic Component (Workshops Assignments, Instructors)

 Redirection to the current Semester’s Content

 https://scs.senecac.on.ca/~btp100/dynamic/workshops/index.html

Weekly Coordination Meetings

 …

 Not discussed (Elnaz and Peter Liu will meet)

Evaluation Weights for the Winter Semester

 Elnaz intends to follow OOP244 experiment

 Fall – BTP100 Winter – BTP100 Summer – BTP200

Final Project 15% 20% 15%

Workshops/Lab Work 30% 30% 30%

Quizzes 15% 15% 15%

Midterm Test 20% 25% 20%

Final Exam 20% 10% 20%

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

Proposal to Reformat the Delivery

 …

 Not discussed

OOP345 – Object-Oriented Software Development Using C++11

Revised Timeline

 Direct path to STL with detail features deferred to last third of the semester

https://scs.senecac.on.ca/~btp100/dynamic/workshops/index.html

ICT - Chris Szalwinski October 8 2015 10

 https://scs.senecac.on.ca/~oop345/pages/timeline.html

 Not discussed

Evaluation Weights for the Winter Semester

 Not discussed

 Fall – OOP345 Winter – OOP345 Fall – BTP305

Final Project 15% 15%

Workshops/Lab Work 30% 30%

Quizzes 15% 15%

Midterm Test 20% 20%

Final Exam 20% 20%

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

 Not discussed

BTP305 – Object-Oriented Software Development Using C++11

Revised Timeline

 Direct path to STL detail features deferred to last third of the semester

 https://scs.senecac.on.ca/~btp305/pages/timeline.html

 Not discussed

Evaluation Weights for the Winter Semester

 Not discussed

 Fall – BTP305 Winter – BTP305

Final Project 15%

Workshops/Lab Work 30%

Quizzes 15%

Midterm Test 20%

Final Exam 20%

Windows and Linux Environments

 Do we make Visual Studio IDE a standard tool in this course?

 Is matrix Compilation and Execution sufficient?

https://scs.senecac.on.ca/~oop345/pages/timeline.html
https://scs.senecac.on.ca/~btp305/pages/timeline.html

ICT - Chris Szalwinski October 8 2015 11

 Elliott uses Visual Studio

 Greg does not use Visual Studio

 Not discussed

Material Allowed on Tests and the Final Exam

 Do we restrict the material allowed to what is stated on the subject outline?

 Not discussed

Faculty of Continuing Education Conflicts

IPC144

 Subject Description and LOs match

 Topic list, reference text, mode and assessment weights DO NOT match

OOP244

 Subject Description and LOs match

 Topic list, reference text, mode and assessment weights DO NOT match

OOP345

 Subject Description and LOs match

 Topic list, reference text, mode and assessment weights DO NOT match

 Ian – some discussions have been held with ConEd: ??

ICT - Chris Szalwinski October 8 2015 12

Proposed Winter Working Groups

 Volunteers for All Groups Needed

C++ Idioms

C++ does not protect the software developer from misuse of the language. Idioms are examples usage

that has been popularized by the experts. Applying these idioms assists in producing quality code.

Understanding idioms helps an instructor explain why C++ code is written in a certain way rather than in

any arbitrary way.

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms (June 18 2014)

 “C++ has indeed become too “expert friendly” at a time where the degree of effective formal education

of the average software developer has declined. However, the solution is not to dumb down the

programming languages but to use a variety of programming languages and educate more experts.

There has to be languages for those experts to use–and C++ is one of those languages.” Bjarne

Stroustrup (2006). “The Problem with Programming” Computer News Nov 28 2006.

 Not discussed

C++ Best Practices

https://www.gitbook.com/book/lefticus/cpp-best-practices/details

https://isocpp.org/wiki/faq/Coding-standards

http://www.amazon.com/exec/obidos/ASIN/0321113586/

http://stroustrup.com/JSF-AV-rules.pdf

 Not discussed

Mapping Topics to Core Literacies

 Not discussed

Other Business

 Not discussed

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
https://www.gitbook.com/book/lefticus/cpp-best-practices/details
https://isocpp.org/wiki/faq/Coding-standards
http://www.amazon.com/exec/obidos/ASIN/0321113586/
http://stroustrup.com/JSF-AV-rules.pdf

