
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 9 LESSON 1

REGULAR EXPRESSIONS VS FILENAME EXPANSION /
SIMPLE AND COMPLEX REGULAR EXPRESSIONS

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 1 TOPICS

Regular Expressions
• Definition / Purpose

• Regular Expressions vs. Filename Expansion

Simple and Complex Regular Expressions
• Simple (Literal) Regular expressions using grep

• Complex Regular Expressions using grep
• Demonstration

Perform Week 9 Tutorial
• Investigation 1

• Review Questions (Simple and Complex Regular Expressions Parts A and B)

REGULAR EXPRESSIONS

Definition

A regular expression … is a sequence of characters that define
a search pattern. Usually, such patterns are used by string searching
algorithms for "find" or "find and replace" operations on strings,
or for input validation.

Reference: https://en.wikipedia.org/wiki/Regular_expression

https://en.wikipedia.org/wiki/Regular_expression

REGULAR EXPRESSIONS

Regular Expressions vs Filename
Expansion

In a previous lesson, you learned filename
expansion symbols that allow the Linux shell to
expand filenames as arguments (referred to as
“globbing”).

This is used for command file management and
file manipulation commands including:

ls, rm, mv, cp, cat, less, more,
head, tail, sort, uniq, grep, tr,
cut and wc

REGULAR EXPRESSIONS

Regular Expressions vs Filename Expansion

Regular expressions are used to search, edit and manipulate text. This can
represent text contained in a file or within a pipeline command.

Regular expressions are used with commands that match patterns contained in
text such as:

grep, egrep, man, more, less, vi, sed and awk

REGULAR EXPRESSIONS

Simple (literal) Regular Expressions With Linux Commands

A simple regular expression is a collection of characters
(for example: words or phrases).

Although we will later discuss several Linux commands that use
regular expressions, the grep Linux command is useful to
learn to display lines of text that match a regular expression.

Example:
grep “Linux” document.txt

REGULAR EXPRESSIONS

Regular Expressions With Linux Pipeline Commands

Regular expressions can also be used to manipulate text
within Linux Pipeline Commands.

The grep command can act as a filter to match text patterns.
In turn, the stdout from that filter can be further processed by
other filters throughout the Linux pipeline command.

Examples:

ls | grep “txt”
who | grep “khan” | head -20

REGULAR EXPRESSIONS

Instructor Demonstration
Your instructor will demonstrate examples of using
simple regular expressions with the grep command.

REGULAR EXPRESSIONS

More Precise Pattern Matching

The problem with using simple (literal) regular expressions is that only
simple or general patterns are matched.

For example, the pattern the would match larger words such as:

there, they, either, them, their, in addition to the word the.

There are also other types of patterns you may want to search such as
location of pattern at the beginning or ending of a string, number of
characters (or character classes) or the number of occurrences of a
character or pattern.

We can use complex and extended regular expressions for more
precise matches.

We will discuss complex regular expressions in this lesson.

REGULAR EXPRESSIONS

Complex Regular Expressions Symbols

Complex Regular Expressions use symbols to help match text
for more precise or complex patterns.

The most common complex regular expression symbols
are displayed below:

Anchors ^ , $

Characters .

Character Class [] , [^]

Zero or More Occurrence *

REGULAR EXPRESSIONS

Complex Regular Expressions Symbols

Anchors: ^ , $

Anchors are used to “anchor” the match at a specific
position (at beginning or ending of a string of text).

The ^ symbol anchors the pattern at the beginning of
the string.

The $ symbol anchors the pattern at the end of the string.

Examples:
grep “^Beginning” data.txt
grep “end$” data.txt

REGULAR EXPRESSIONS

Complex Regular Expressions Symbols

Single Character: .

The period symbol “.” is used to represent a single
character which could represent any character.

This symbol (or sequence of period symbols) are
effective when used with anchors.

Examples:

grep “^.$” data.txt
grep “^.....$” data.txt

REGULAR EXPRESSIONS

Complex Regular Expressions Symbols

Character Class: [] , [^]

Works like the Single Character symbol, but with restrictions.

The ^ symbol with the character class means opposite of the
contents within the character class.

This symbol (or sequence of these symbols) are effective
when used with anchors.

Examples:

grep “^[a-z][a-z][a-z]” data.txt
grep “[^a-zA-Z]$” data.txt

REGULAR EXPRESSIONS

Complex Regular Expressions Symbols
Zero or More Occurrence(s) *

This symbol means zero of more occurrences of the
previous character.

People learning about regular expressions get confused with this
symbol thinking that it means zero or any character, but that
would require the use of two symbols: .*

Examples:

grep “Linux i*” data.txt
grep “I*s an” data.txt
grep “^[0-9].*[0-9]$” myfile.txt

REGULAR EXPRESSIONS

Instructor Demonstration
Your instructor will demonstrate examples of using
complex regular expressions with the grep command.

REGULAR EXPRESSIONS

Tip: Creating a Reference Sheet

It is a good idea to keep symbols for Filename Expansion
and Regular Expressions separate since there is some
overlapping similar symbols that have different purposes.

It is recommended to write-out these separate set of
symbols on a sheet of paper for reference.

HOMEWORK

Getting Practice

Perform Week 9 Tutorial:
(Due: Friday Week 10 @ midnight for a 2% grade):

• INVESTIGATION 1: SIMPLE & COMPLEX REGULAR EXPRESSIONS

• LINUX PRACTICE QUESTIONS
Review Questions (Simple and Complex Regular Expressions Parts A and B)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial9:_Regular_Expressions
https://wiki.cdot.senecacollege.ca/wiki/Tutorial9:_Regular_Expressions

