
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 12 LESSON 1

LOGIC CONTINUED: IF – ELIF – ELSE STATEMENT

LOOPS CONTINUED: FOR LOOP / WHILE LOOP

EXIT & BREAK STATEMENTS / ERROR-CHECKING / EXPORT COMMAND

START-UP FILES / FURTHER STUDY

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON TOPICS

Additional Control Flow Statements

• if-elif-else

• for loop (continued)

• while loop

• exit and break statements / Error Checking / export Command

• Demonstration

Start-up Files

• Definition / Purpose

• /etc/profile , ~/.bash_profile , ~/.bashrc , ~/.bash_logout / Demonstration

Further Studies in Linux

Perform Week 12 Tutorial

• Investigations 1, 2 & 3

• Review Questions (Questions 1 - 8)

ADDITIONAL CONTROL FLOW STATEMENTS

As discussed in a previous lesson, we can use

control flow statements that will control the sequence of

a running script based on various situations or conditions.

Control Flow Statement are used to make your shell scripts

more flexible and can adapt to changing situations.

We are going to learn more types of control flow statements

(both logical and loops) to give more flexibility and power to

your shell scripts.

ADDITIONAL CONTROL FLOW STATEMENTS

if-elif-else Statements

If the test condition returns a TRUE value, then the Linux Commands

between then and else statements are executed.

If the test returns a FALSE value, then a new condition is tested,

and action is taken if the result is TRUE

Otherwise, an action will be taken if the new test condition is FALSE

Example:

if [$num1 –lt $num2]

then

echo “Less Than”

elif [$num1 –gt $num2]

then

echo “Greater Than”

else

echo “Equal to”

fi

ADDITIONAL CONTROL FLOW STATEMENTS

Instructor Demonstration

Task:

Create a Bash Shell script to prompt the user for a percentage

grade. The shell script will then assign a letter grade based

on the percentage grade.

ADDITIONAL CONTROL FLOW STATEMENTS

for Loop

In a previous lesson, you learned how to use the for loop using a list.

A list consists of arguments that are used for each iteration of the loop.

Example:

for item in list

do

command(s)

Done

NOTE: There are other ways we can use the for loop (including command substitution)

to allow our shell scripts to be more effective.

ADDITIONAL CONTROL FLOW STATEMENTS

for Loop using Command Substitution

In the example below, we will use command substitution to

issue the ls command and have that output (filenames) become

arguments in the for list.

Example:

for var in $(ls)

do

echo “Filename is: $var”

Done

ADDITIONAL CONTROL FLOW STATEMENTS

Instructor Demonstration

Task:

Create a Bash Shell script to clear the screen and then display all files (non-

hidden) in your home directory.

The output should show files on each line and number:

For Example:

File 1: abc.txt

File 2: def.txt

File 3: ghi.txt

etc…

ADDITIONAL CONTROL FLOW STATEMENTS

Using the while Loop Statement

The condition/expression is evaluated, and if the condition/expression is TRUE, the

code within … the block is executed.

This repeats until the condition/expression becomes FALSE.

Reference: https://en.wikipedia.org/wiki/While_loop

Example:

answer=10

read –p “pick a number between 1 and 10: “ guess

while [$guess –ne 10]

do

read –p “Try again: “ guess

done

echo “You are correct”

https://en.wikipedia.org/wiki/While_loop

ADDITIONAL CONTROL FLOW STATEMENTS

Instructor Demonstration

Task:

Create a Bash Shell script to prompt the user for a number

(error check for an unsigned integer).

Once the user enters a VALID unsigned integer, count-down the numbers on

a separate line by a value of 1 until you reach the value 1, then print on the last

line: Blast Off!

EXIT STATEMENT

The exit statement is used to terminate a shell script.

This statement is very useful when combined with logic in a shell script.

The exit command can contain an argument to provide the exit status

of your shell script.

Example:

if [$# -ne 1]

then

echo "USAGE: $0 [arg]"

exit 1

fi

BREAK STATEMENT

The break statement is used to terminate a loop.

Although the loop terminates, the shell script will continue running.

Example:

read -p "Enter a number: " number

while [$number -ne 5]

do

read -p "Try again. Enter a number: " number

if [$number -eq 5]

then

break

fi

done

ERROR-CHECKING

As mentioned in Week 10, instead of using the test command,

you can run a Linux command or Linux pipeline command to test a condition.

We can use a Linux pipeline command to force the user

to enter a valid unsigned integer.

Example:

read -p "Enter a mark (0-100): " mark

while ! echo $mark | egrep "^[0-9]{1,}$" > /dev/null 2> /dev/null

do

read -p "Not a valid number. Enter a mark (0-100): " mark

done

ERROR-CHECKING

Compound operators can be used when testing conditions.

&& represent AND which requires ALL test conditions to be TRUE

for the result to be TRUE.

|| represents OR which only requires one test condition to be TRUE

for the result to be TRUE. If ALL conditions are FALSE,

then the result will be FALSE.

Example:

read -p "Enter a mark (0-100): " mark

while [$mark -lt 0] || [$mark -gt 100]

do

read -p "Invalid number range. Enter a mark (0-100): " mark

done

RUNNING SHELL SCRIPTS WITHIN SHELL SCRIPTS

You can run shell scripts inside of shell scripts.

If you want the value variables to transfer to “inside” the shell script,

you would need to use the export command prior to executing the inside shell script.

Example of NOT using export Command: Example of using export Command:

ADDITIONAL CONTROL FLOW STATEMENTS

Instructor Demonstration

Your instructor will demonstrate the use of the

exit and break statements as well as the export command.

STARTUP FILES

Start-up Files

Shell configuration (start-up) files are scripts that are run when you log in, log

out, or start a new shell. Start-up files can be used, for example, to set the prompt

and screen display, create local variables, or create temporary Linux commands (aliases).

The file pathname /etc/profile belongs to the root user and is the first start-up file

that executes when you log in, regardless of shell.

The /etc/bashrc file is used for setting the default Bash shell environments for users. It

is generally NOT used to generate output from commands.

User-specific config start-up files are in the user's home directory:

~/.bash_profile runs when you log in ~/.bashrc

runs when you start an interactive subshell. You can use ~/.bash_profile

to issue commands that produce output (eg. date, echo “hello”)

STARTUP FILES

Logout Files

There are files that reset or restore the environment or properly

shut-down running programs when the user logs out of their shell.

User-specific logout start-up files are in the user's home directory:

~/.bash_logout

STARTUP FILES

Instructor Demonstration

Your instructor will demonstrate examples of

using start-up files.

FURTHER STUDY

In order to get efficient in working in the Linux environment

requires practice and applying what you have learned to administering Linux

operating systems including: user management, installing and removing

applications, network services and network security.

Although you are NOT required to perform Linux administration for this

course, there are useful course notes and TUTORIALS for advanced Linux

server administration that have been created for the Networking / Computer

Support Specialist stream:

• OPS245: Basic Linux Server Administration

• OPS335: Advanced Linux Server Administration

Take care and good luck in your future endeavours :)

https://wiki.cdot.senecacollege.ca/wiki/OPS245
https://wiki.cdot.senecacollege.ca/wiki/OPS335

ADDITIONAL CONTROL FLOW STATEMENTS / FEATURES

Getting Practice

Perform Week 12 Tutorial:

(Due: Friday Week 13 @ midnight for a 2% grade):

• INVESTIGATION 1: ADDITIONAL LOGIC STATEMENTS

• INVESTIGATION 2: ADDITIONAL LOOPING STATEMENTS

• INVESTIGATION 3: USING STARTUP FILES

• LINUX PRACTICE QUESTIONS (Questions 1 - 8)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial12:_Shell_Scripting_-_Part_2#INVESTIGATION_1:_ADDITIONAL_LOGIC_STATEMENTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial12:_Shell_Scripting_-_Part_2#INVESTIGATION_2:_ADDITIONAL_LOOPING_STATEMENTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial12:_Shell_Scripting_-_Part_2#INVESTIGATION_3:_USING_STARTUP_FILES
https://wiki.cdot.senecacollege.ca/wiki/Tutorial12:_Shell_Scripting_-_Part_2#LINUX_PRACTICE_QUESTIONS

